

Project No. 2019-1-DE02-KA202-006099

mes Training Curriculums

INDI4.0 Project Stuttgart | 06/2021 Workshop documents Intellectual Output "IO2"

Additive manufacturing

Existing additive manufacturing equipment Stratasys dimension sst 1200es Stratasys objet350 connex3 Trumpf TruPrint 1000

(FDM) (Polyjet Tech.)

Learning situation:

Competence area / sub- ject:	Research and present professional competence / production technology, construction, project competence / information					
School type / occupational field / occupation:	Professional school; TPD-MAK; TPD-PGK school for machine technology	(tested with TPD-M	AK) technical			
Curriculum / learning area	Technical product designer TPD-MAK: LF3; LF6; LF8; LF9; LF13					
reference:	Educational plan for the technical college, specializing in machine technology: - construction - production technology					
Reference to the handout "Industry 4.0 - Implementation in the classroom"						
- scenario:	1					
- Requirement area:	1					
Time range:	6 TU [TU ≘1 double lesson; 90 min]	[Nu	mber] UE			
Learning factory:	Festo learning factory		(wss)			
	Existing additive manufacturing equipment Stratasys dimension sst 1200es Stratasys objet350 connex3 Trumpf TruPrint 1000	(FDM) (Polyjet Tech.) (SLM)	(mes) (mes) (mes)			

Technical settings:

Software:

Brief description and learning objectives this lesson sequence:

Basics and various processes for additive manufacturing, processes for additive manufacturing, FDM mode-ling

Goal analysis for the binding classification in the learning area lessons / for the course planning:

competency-based goals (1: 1 from	Contents (1: 1 from BP)	Action result	interdisciplinary skills
BP)			
Developing components made of	 Pupils inform themselves about 	 Collect informations 	 Evaluate and evaluate
plastics taking into account primary	different procedures	and a chain of	of information
and forming processes in the context	to the emergence of	Assign processes	Representation and presentation of
of assemblies	Components	Complexity of	technical information and contexts
	 find out about 	Recognize processes and	
	The necessities	classify	
	Work steps for	 Being able to understand and ex- 	
	Production of components	plain the working methods of manu-	
	• find out about	facturing processes	
	the associated		
	costs		
	 find out about 		
	the duration to generate		
	of components		

Progress planning

dura-		What is learned	How c			Cooperation,	
tion phas		Desired competencies	Action of the teacher Action of the pupils		media	material	notices, Explanations
0.25	E.	Leading example bit box:	L informed		B (O)	Picture,	
0.25	E.	Classification of manufac- turing processes:	L informed		В (О)	Slide, pic- ture,	
0.50	ERA	 Assignment: Additive manufacturing Subtrac- tive manufacturing 	- / -	 EA Collect informations Associate information Work out the difference between additive and subtractive manufac- turing 	В (О)	Slide, pic- ture,	
0.50	ERA	 Knowledge of how sub- tractive manufacturing processes work 	AA	 Collect information and assign it to a chain of pro- cesses Recognize and classify the complexity of processes 		DK	
0.50	ERA	 Knowledge of how addi- tive manufacturing pro- cesses work 	AA	 Collect information and assign it to a chain of pro- cesses Recognize and classify the complexity of processes 		DK	

Methodical and didactic information

Progress planning

dura-	nhaaa	What is learned	How do you learn?			material	Cooperation, notices, Explanations
tion	phase	Desired competencies	Action of the teacher Action of the pupils		media		
1.50	BA	 Determine the available range of devices Record the process used by each device for additi- ve manufacturing Determine and document additive manufacturing processes 	AWAY	 GA Prepare PR to classify the additive manufacturing processes according to the technology used 	AA; AWAY; Internet research	PR	 Additive manufacturing Market research on available devices
1.50	BA	 Weigh the advantages and disadvantages of the procedures against each other and document them 	AA	 Classify GA document and present evaluated in- formation 	Internet research, create PR	PR	 Comparison of additive and subtrac- tive manu- facturing
0.50	K; R.	 When should which ma- nufacturing process be preferred? 	AA	• GA \ evaluate and classify the properties of the pro- cesses for their targeted selection	DK, PR	DK, PR	

Methodical and didactic information

Leading example bit box

The components required for a bit box are to be manufactured in the I4.0 learning factory.

The picture on the right shows the bit box without inserted bits and without a bit holder.

Each component can be manufactured from a selection of 9 colors and 6 different bits can be selected from a selection of currently 9 available bits and placed in different positions in the bit box.

This means a large number of variants or, for the individual components, only small quantities down to a lot size of 1.

Due to the small number of pieces for the individual components, conventional manufacturing processes appear complex and too expensive to manufacture.

For this reason, additive manufacturing (3D printing) is chosen as the manufacturing process, as this process appears to be more suitable for small quantities.

In order to be able to decide which of the available processes is suitable, information about the possible additive manufacturing processes must first be collected and compared.

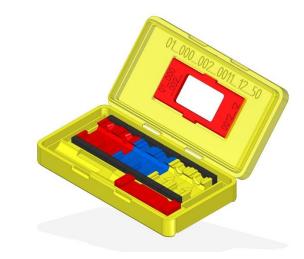


Image: Example of a bit box (Image source: mes Stuttgart)

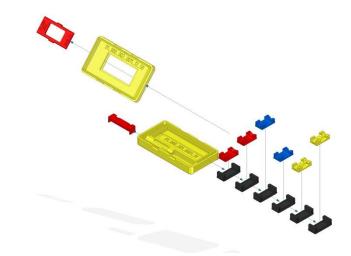


Image: Exploded view of the bit box (Image source: mes Stuttgart)

The development of a component

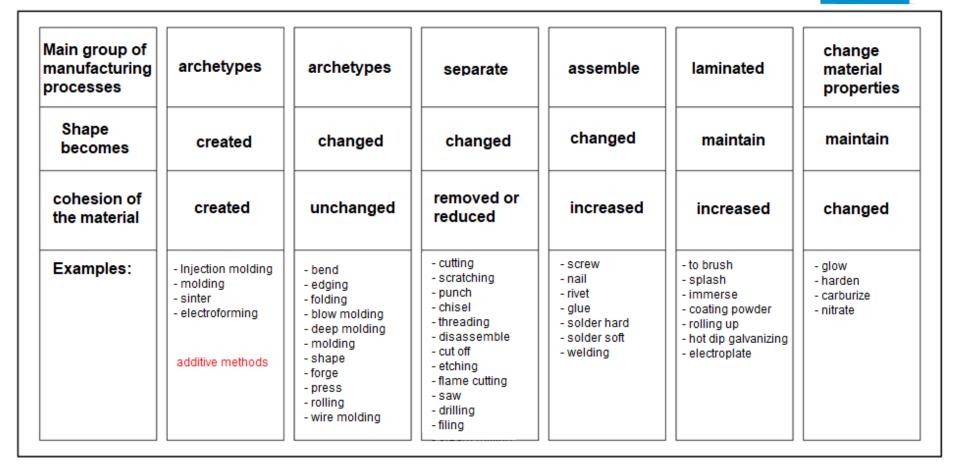
Subtractive manufacturing:

- 1. Idea (component for the realization of a function / task)
- 2. Construction (CAD) taking into account the possible production process, Set tolerances
- 3rd Manufacture the starting part (sawing off the semi-finished product)
- 4th Subtractive manufacturing (milling, turning, drilling, thread cutting)
- 5. Measure, test

Additive manufacturing:

- 1. Idea (component for the realization of a function / task)
- 2. Construction (CAD) taking into account the possible production process, Take process tolerances into account
- 3rd Prepare data (file e.g. in stl format)
- 4th Send data to printer, start printing
- 5. Measure, test

Where can additive manufacturing be classified as a process?


classification of manufacturing processes

Main group of manufacturing processes	archetypes	archetypes	separate	assemble	laminated	change material properties
Shape becomes	created	changed	changed	changed	maintain	maintain
cohesion of the material	created	unchanged	removed or reduced	increased	increased	changed
Examples:	- Injection molding - molding - sinter - electroforming	- bend - edging - folding - blow molding - deep molding - molding - molding - shape - forge - press - rolling - wire molding	- cutting - scratching - punch - chisel - threading - disassemble - cut off - etching - flame cutting - saw - drilling - filing	- screw - nail - rivet - glue - solder hard - solder soft - welding	- to brush - splash - immerse - coating powder - rolling up - hot dip galvanizing - electroplate	- glow - harden - carburize - nitrate

Additive manufacturing belongs to the main group archetypes.

classification of manufacturing processes

How does additive manufacturing work?

3D printing or additive manufacturing is a computer-controlled process that creates 3-dimensional objects that are created by applying material in layers.

Objects can arise which can have almost any shape. There are limitations mainly due to the size of the available installation space in the device used.

Control commands for the 3D printer are generated directly from digital data (CAD), which then build up the object to be printed in layers. The orientation of the layers in the resulting component can have an influence on the component strength and limit the load-bearing capacity of the component. Likewise, the available materials do not cover all desired component properties.

Differences between subtractive and additive manufacturing (example)

	Subtractive manufacturing	Additive manufacturing (e.g. FDM process)
Step 1	A CAD model is created for the task / function of a component to be implemented. The planned manufacturing process must be taken into account, as well as the required material properties when selecting the material.	A CAD model is created for the task / function of a component to be implemented. The planned manufacturing process must be taken into account, as well as the required material properties when selecting the material.
step 2	The required starting piece is cut off from a semi-finished product	A print file (e.g. stl file) is generated from the CAD data and sent to the 3D printer. The construction process starts and works automa- tically until the component is completed.
step 3	The desired component geometry is roughly worked out by roug- hing.	Any rework that may be required, such as removing support struc- tures, is carried out.
Step 4	The desired geometry is produced by finishing.	The tolerances are determined by the construction process of the additive process.
Step 5	The functional surfaces are given the required tolerances through fine machining.	By measuring the component, the exact component geometry is recorded and checked.
Step 6	Compliance with the required functional tolerances is checked by measuring the component.	

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

The published work above is licensed under a <u>Creative</u> <u>Commons Attribution-ShareAlike 4.0 International License</u>.